

 Navigation

 	
 index

 	
 next |

 	django-payments 0.9.0 documentation

django-payments

Contents:

	1. Installation

	2. Making a payment
	2.1. Payment amounts

	2.2. Payment statuses

	2.3. Fraud statuses

	3. Refunding a payment

	4. Authorization and capture
	4.1. Capturing the payment

	4.2. Releasing the payment

	5. Provided backends
	5.1. Dummy

	5.2. Authorize.Net

	5.3. Braintree

	5.4. Coinbase

	5.5. Cybersource

	5.6. Dotpay

	5.7. Google Wallet

	5.8. PayPal

	5.9. Sage Pay

	5.10. Sofort.com

	5.11. Stripe

 Copyright 2010-2013, Mirumee Software.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-payments 0.9.0 documentation

1. Installation

	Install django-payments

$ pip install django-payments

	Add the callback processor to your URL router:

urls.py
from django.conf.urls import include, url

urlpatterns = [
 url('^payments/', include('payments.urls'))]

	Define a Payment model by subclassing payments.models.BasePayment:

mypaymentapp/models.py
from decimal import Decimal

from payments import PurchasedItem
from payments.models import BasePayment

class Payment(BasePayment):

 def get_failure_url(self):
 return 'http://example.com/failure/'

 def get_success_url(self):
 return 'http://example.com/success/'

 def get_purchased_items(self):
 # you'll probably want to retrieve these from an associated order
 yield PurchasedItem(name='The Hound of the Baskervilles', sku='BSKV',
 quantity=9, price=Decimal(10), currency='USD')

The get_purchased_items() method should return an iterable yielding instances of payments.PurchasedItem.

	Write a view that will handle the payment. You can obtain a form instance by passing POST data to payment.get_form():

mypaymentapp/views.py
from django.shortcuts import get_object_or_404, redirect
from django.template.response import TemplateResponse
from payments import get_payment_model, RedirectNeeded

def payment_details(request, payment_id):
 payment = get_object_or_404(get_payment_model(), id=payment_id)
 try:
 form = payment.get_form(data=request.POST or None)
 except RedirectNeeded as redirect_to:
 return redirect(str(redirect_to))
 return TemplateResponse(request, 'payment.html',
 {'form': form, 'payment': payment})

Note

Please note that Payment.get_form() may raise a RedirectNeeded exception.

	Prepare a template that displays the form using its action and method:

<!-- templates/payment.html -->
<form action="{{ form.action }}" method="{{ form.method }}">
 {{ form.as_p }}
 <p><input type="submit" value="Proceed" /></p>
</form>

	Configure your settings.py:

settings.py
INSTALLED_APPS = [
 # ...
 'payments']

PAYMENT_HOST = 'localhost:8000'
PAYMENT_USES_SSL = False
PAYMENT_MODEL = 'mypaymentapp.Payment'
PAYMENT_VARIANTS = {
 'default': ('payments.dummy.DummyProvider', {})}

Variants are named pairs of payment providers and their configuration.

Note

Variant names are used in URLs so it’s best to stick to ASCII.

 Copyright 2010-2013, Mirumee Software.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-payments 0.9.0 documentation

2. Making a payment

	Create a Payment instance:

from decimal import Decimal

from payments import get_payment_model

Payment = get_payment_model()
payment = Payment.objects.create(
 variant='default', # this is the variant from PAYMENT_VARIANTS
 description='Book purchase',
 total=Decimal(120),
 tax=Decimal(20),
 currency='USD',
 delivery=Decimal(10),
 billing_first_name='Sherlock',
 billing_last_name='Holmes',
 billing_address_1='221B Baker Street',
 billing_address_2='',
 billing_city='London',
 billing_postcode='NW1 6XE',
 billing_country_code='UK',
 billing_country_area='Greater London',
 customer_ip_address='127.0.0.1')

	Redirect the user to your payment handling view.

2.1. Payment amounts

The Payment instance provides two fields that let you check the total charged amount and the amount actually captured:

>>> payment.total
Decimal('181.38')

>>> payment.captured_amount
Decimal('0')

2.2. Payment statuses

A payment may have one of several statuses, that indicates its current state. The status is stored in status field of your Payment instance. Possible statuses are:

	waiting

	Payment is waiting for confirmation. This is the first status, which is assigned to the payment after creating it.

	input

	Customer requested the payment form and is providing the payment data.

	preauth

	Customer has authorized the payment and now it can be captured. Please remember, that this status is only possible when the capture flag is set to False (see Authorization and capture for details).

	confirmed

	Payment has been finalized or the the funds were captured (when using capture=False).

	rejected

	The payment was rejected by the payment gateway. Inspect the contents of the payment.message and payment.extra_data fields to see the gateway response.

	refunded

	Payment has been successfully refunded to the customer (see Refunding a payment for details).

	error

	An error occurred during the communication with the payment gateway. Inspect the contents of the payment.message and payment.extra_data fields to see the gateway response.

2.3. Fraud statuses

Some gateways provide services used for fraud detection. You can check the fraud status of your payment by accessing payment.fraud_status and payment.fraud_message fields. The possible fraud statuses are:

	unknown

	The fraud status is unknown. This is the default status for gateways, that do not involve fraud detection.

	accept

	Fraud was not detected.

	reject

	Fraud service detected some problems with the payment. Inspect the details by accessing the payment.fraud_message field.

	review

	The payment was marked for review.

 Copyright 2010-2013, Mirumee Software.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-payments 0.9.0 documentation

3. Refunding a payment

If you need to refund a payment, you can do this by calling the refund() method on your Payment instance:

>>> from payments import get_payment_model
>>> Payment = get_payment_model()
>>> payment = Payment.objects.get()
>>> payment.refund()

By default, the total amount would be refunded. You can perform a partial refund, by providing the amount parameter:

>>> from decimal import Decimal
>>> payment.refund(amount=Decimal(10.0))

Note

Only payments with the confirmed status can be refunded.

 Copyright 2010-2013, Mirumee Software.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-payments 0.9.0 documentation

4. Authorization and capture

Some gateways offer a two-step payment method known as Authorization & Capture, which allows you to collect the payment manually after the buyer has authorized it. To enable this payment type, you have to set the capture parameter to False in the configuration of payment backend:

settings.py
PAYMENT_VARIANTS = {
 'default': ('payments.dummy.DummyProvider', {'capture': False})}

4.1. Capturing the payment

To capture the payment from the buyer, call the capture() method on the Payment instance:

>>> from payments import get_payment_model
>>> Payment = get_payment_model()
>>> payment = Payment.objects.get()
>>> payment.capture()

By default, the total amount will be captured. You can capture a lower amount, by providing the amount parameter:

>>> from decimal import Decimal
>>> payment.capture(amount=Decimal(10.0))

Note

Only payments with the preauth status can be captured.

4.2. Releasing the payment

To release the payment to the buyer, call the release() method on your Payment instance:

>>> from payments import get_payment_model
>>> Payment = get_payment_model()
>>> payment = Payment.objects.get()
>>> payment.release()

Note

Only payments with the preauth status can be released.

 Copyright 2010-2013, Mirumee Software.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	django-payments 0.9.0 documentation

5. Provided backends

5.1. Dummy

	
class payments.dummy.DummyProvider

	This is a dummy backend suitable for testing your store without contacting any payment gateways. Instead of using an external service it will simply show you a form that allows you to confirm or reject the payment.

Example:

PAYMENT_VARIANTS = {
 'dummy': ('payments.dummy.DummyProvider', {})}

5.2. Authorize.Net

	
class payments.authorizenet.AuthorizeNetProvider(login_id, transaction_key[, endpoint='https://test.authorize.net/gateway/transact.dll'])

	This backend implements payments using the Advanced Integration Method (AIM) from Authorize.Net [https://www.authorize.net/].

	Parameters:	
	login_id – Your API Login ID assigned by Authorize.net

	transaction_key – Your unique Transaction Key assigned by Authorize.net

	endpoint – The API endpoint to use. For the production environment, use 'https://secure.authorize.net/gateway/transact.dll' instead

Example:

use staging environment
PAYMENT_VARIANTS = {
 'authorizenet': ('payments.authorizenet.AuthorizeNetProvider', {
 'login_id': '1234login',
 'transaction_key': '1234567890abcdef',
 'endpoint': 'https://test.authorize.net/gateway/transact.dll'})}

This backend does not support fraud detection.

5.3. Braintree

	
class payments.braintree.BraintreeProvider(merchant_id, public_key, private_key[, sandbox=True])

	This backend implements payments using Braintree [https://www.braintreepayments.com/].

	Parameters:	
	merchant_id – Merchant ID assigned by Braintree

	public_key – Public key assigned by Braintree

	private_key – Private key assigned by Braintree

	sandbox – Whether to use a sandbox environment for testing

Example:

use sandbox
PAYMENT_VARIANTS = {
 'braintree': ('payments.braintree.BraintreeProvider', {
 'merchant_id': '112233445566',
 'public_key': '1234567890abcdef',
 'private_key': 'abcdef123456',
 'sandbox': True})}

This backend does not support fraud detection.

5.4. Coinbase

	
class payments.coinbase.CoinbaseProvider(key, secret[, endpoint='sandbox.coinbase.com'])

	This backend implements payments using Coinbase [https://www.coinbase.com/].

	Parameters:	
	key – Api key generated by Coinbase

	secret – Api secret generated by Coinbase

	endpoint – Coinbase endpoint domain to use. For the production environment, use 'coinbase.com' instead

Example:

use sandbox
PAYMENT_VARIANTS = {
 'coinbase': ('payments.coinbase.CoinbaseProvider', {
 'key': '123abcd',
 'secret': 'abcd1234',
 'endpoint': 'sandbox.coinbase.com'})}

This backend does not support fraud detection.

5.5. Cybersource

	
class payments.cybersource.CyberSourceProvider(merchant_id, password[, org_id=None, fingerprint_url='https://h.online-metrix.net/fp/', sandbox=True, capture=True])

	This backend implements payments using Cybersource [http://www.cybersource.com/www/].

	Parameters:	
	merchant_id – Your Merchant ID

	password – Generated transaction security key for the SOAP toolkit

	org_id – Provide this parameter to enable Cybersource Device Fingerprinting

	fingerprint_url – Address of the fingerprint server

	sandbox – Whether to use a sandbox environment for testing

	capture – Whether to capture the payment automatically. See Authorization and capture for more details.

Example:

use sandbox
PAYMENT_VARIANTS = {
 'cybersource': ('payments.cybersource.CyberSourceProvider', {
 'merchant_id': 'example',
 'password': '1234567890abcdef',
 'capture': False,
 'sandbox': True})}

This backend supports fraud detection.

5.5.1. Merchant-Defined Data

Cybersource allows you to pass Merchant-Defined Data, which is additional information about the payment or the order, such as an order number, additional customer information, or a special comment or request from the customer. This can be accomplished by passing your data to the Payment instance:

>>> payment.attrs.merchant_defined_data = {'01': 'foo', '02': 'bar'}

5.6. Dotpay

	
class payments.dotpay.DotpayProvider(seller_id, pin[, channel=0, lock=False, lang='pl', endpoint='https://ssl.dotpay.pl/test_payment/'])

	This backend implements payments using a popular Polish gateway, Dotpay.pl [http://www.dotpay.pl].

Due to API limitations there is no support for transferring purchased items.

	Parameters:	
	seller_id – Seller ID assigned by Dotpay

	pin – PIN assigned by Dotpay

	channel – Default payment channel (consult reference guide)

	lang – UI language

	lock – Whether to disable channels other than the default selected above

	endpoint – The API endpoint to use. For the production environment, use 'https://ssl.dotpay.pl/' instead

Example:

use defaults for channel and lang but lock available channels
PAYMENT_VARIANTS = {
 'dotpay': ('payments.dotpay.DotpayProvider', {
 'seller_id': '123',
 'pin': '0000',
 'lock': True,
 'endpoint': 'https://ssl.dotpay.pl/test_payment/'})}

This backend does not support fraud detection.

5.7. Google Wallet

	
class payments.wallet.GoogleWalletProvider(seller_id, seller_secret[, library='https://sandbox.google.com/checkout/inapp/lib/buy.js'])

	This backend implements payments using Google Wallet [https://developers.google.com/commerce/wallet/digital/] for digital goods API.

	Parameters:	
	seller_id – Seller ID assigned by Google Wallet

	seller_secret – Seller secret assigned by Google Wallet

	library – The API library to use. For the production environment, use 'https://wallet.google.com/inapp/lib/buy.js' instead

Example:

use sandbox
PAYMENT_VARIANTS = {
 'wallet': ('payments.wallet.GoogleWalletProvider', {
 'seller_id': '112233445566',
 'seller_secret': '1234567890abcdef',
 'library': 'https://sandbox.google.com/checkout/inapp/lib/buy.js'})}

This backend requires js files that should be added to the template using {{ form.media }} e.g:

<!-- templates/payment.html -->
<form action="{{ form.action }}" method="{{ form.method }}">
 {{ form.as_p }}
 <p><input type="submit" value="Proceed" /></p>
</form>
{{ form.media }}

To specify the postback URL at the Merchant Settings page use direct url to process payment view in conjunction with your variant name:

E.g: https://example.com/payments/process/wallet

This backend does not support fraud detection.

5.8. PayPal

	
class payments.paypal.PaypalProvider(client_id, secret[, endpoint='https://api.sandbox.paypal.com', capture=True])

	This backend implements payments using PayPal.com [https://www.paypal.com/].

	Parameters:	
	client_id – Client ID assigned by PayPal or your email address

	secret – Secret assigned by PayPal

	endpoint – The API endpoint to use. For the production environment, use 'https://api.paypal.com' instead

	capture – Whether to capture the payment automatically. See Authorization and capture for more details.

Example:

use sandbox
PAYMENT_VARIANTS = {
 'paypal': ('payments.paypal.PaypalProvider', {
 'client_id': 'user@example.com',
 'secret': 'iseedeadpeople',
 'endpoint': 'https://api.sandbox.paypal.com',
 'capture': False})}

	
class payments.paypal.PaypalCardProvider(client_id, secret[, endpoint='https://api.sandbox.paypal.com'])

	This backend implements payments using PayPal.com [https://www.paypal.com/] but the credit card data is collected by your site.

Parameters are identical to those of payments.paypal.PaypalProvider.

Example:

PAYMENT_VARIANTS = {
 'paypal': ('payments.paypal.PaypalCardProvider', {
 'client_id': 'user@example.com',
 'secret': 'iseedeadpeople'})}

This backend does not support fraud detection.

5.9. Sage Pay

	
class payments.sagepay.SagepayProvider(vendor, encryption_key[, endpoint='https://test.sagepay.com/Simulator/VSPFormGateway.asp'])

	This backend implements payments using SagePay.com [https://www.sagepay.com/] Form API.

Purchased items are not currently transferred.

	Parameters:	
	vendor – Your vendor code

	encryption_key – Encryption key assigned by Sage Pay

	endpoint – The API endpoint to use. For the production environment, use 'https://live.sagepay.com/gateway/service/vspform-register.vsp' instead

Example:

use simulator
PAYMENT_VARIANTS = {
 'sage': ('payments.sagepay.SagepayProvider', {
 'vendor': 'example',
 'encryption_key': '1234567890abcdef',
 'endpoint': 'https://test.sagepay.com/Simulator/VSPFormGateway.asp'})}

This backend does not support fraud detection.

5.10. Sofort.com

	
class payments.sofort.SofortProvider(key, id, project_id[, endpoint='https://api.sofort.com/api/xml'])

	This backend implements payments using sofort.com <https://www.sofort.com/> API.

	Parameters:	
	id – Your sofort.com user id

	key – Your secret key

	project_id – Your sofort.com project id

	endpoint – The API endpoint to use.

Example:

PAYMENT_VARIANTS = {
 'sage': ('payments.sofort.SofortProvider', {
 'id': '123456',
 'key': '1234567890abcdef',
 'project_id': '654321',
 'endpoint': 'https://api.sofort.com/api/xml'})}

This backend does not support fraud detection.

5.11. Stripe

	
class payments.stripe.StripeProvider(secret_key, public_key)

	This backend implements payments using Stripe [https://stripe.com/].

	Parameters:	
	secret_key – Secret key assigned by Stripe.

	public_key – Public key assigned by Stripe.

	name – A friendly name for your store.

	image – Your logo.

Example:

use sandbox
PAYMENT_VARIANTS = {
 'stripe': ('payments.stripe.StripeProvider', {
 'secret_key': 'sk_test_123456',
 'public_key': 'pk_test_123456'})}

This backend does not support fraud detection.

 Copyright 2010-2013, Mirumee Software.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	django-payments 0.9.0 documentation

Index

 P

P

 	

 	payments.authorizenet.AuthorizeNetProvider (built-in class)

 	payments.braintree.BraintreeProvider (built-in class)

 	payments.coinbase.CoinbaseProvider (built-in class)

 	payments.cybersource.CyberSourceProvider (built-in class)

 	payments.dotpay.DotpayProvider (built-in class)

 	payments.dummy.DummyProvider (built-in class)

 	

 	payments.paypal.PaypalCardProvider (built-in class)

 	payments.paypal.PaypalProvider (built-in class)

 	payments.sagepay.SagepayProvider (built-in class)

 	payments.sofort.SofortProvider (built-in class)

 	payments.stripe.StripeProvider (built-in class)

 	payments.wallet.GoogleWalletProvider (built-in class)

 Copyright 2010-2013, Mirumee Software.
 Created using Sphinx 1.3.5.

 _static/comment.png

search.html

 Navigation

 		
 index

 		django-payments 0.9.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2013, Mirumee Software.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/up.png

_static/down.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/comment-close.png

